RANGIA COLLEGE DEPARTMENT OF MATHEMATICS

HOME ASSIGNMENT

6th Semester (General), 2020 Paper: 6.4 (Advanced Calculus)

(This Home assignment will be assessed as an Internal Examination (Sessional examination))

The figures in the margin indicate full marks for the questions

4	A	. 1	C 11	•
	Anguar	tha	tall	OWNER
Ι.	Answer	uic	IOH	wine.

 $1 \times 6 = 6$

- i) Define usual metric on R^2 ($R^2 = R \times R$ is Complex plane).
- ii) Is it true that different metric can be defined on the single non-empty set?
- iii) Write the Euclidean metric on \mathbb{R}^n .
- iv) Define open set in a metric space (X, d).
- v) Is the empty set ϕ in a metric space (X, d), closed?
- vi) On the real line (R, d), find whether or not the subset]0, 4[of R is a neighbourhood of 3?.

2. Answer the following

 $2 \times 3 = 6$

- i) On the real line (R, d), show that a singleton set is not open.
- ii) In the usual metric space (R, d), show that every open interval is an open set.
- iii) In a discrete metric space (X, d), show that every subset is open.
- 3. Prove that the set \mathbb{R}^n of all ordered n-tuples with the function d defined by

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}, \text{ for all } x = (x_1, x_2, \dots, x_n) \text{ and } y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
 is a metric space.

4. In a metric space (X, d), prove that the intersection of a finite number of open sets is open.

4

4

5. In a metric space (X, d), show that a subset F of X is closed if and only if its complement is open.

4