RANGIA COLLEGE DEPARTMENT OF MATHEMATICS

HOME ASSIGNMENT

$6^{\text {th }}$ Semester (General), 2020

Paper : 6.2 (Advanced Calculus)

(This Home assignment will be assessed as an Internal Examination (Sessional examination))
The figures in the margin indicate full marks for the questions

1. Answer the following.
 $1 \times 6=6$

i) Define usual metric on $R^{2}\left(R^{2}=R \mathrm{x} R\right.$ is Complex plane $)$.
ii) Is it true that different metric can be defined on the single non-empty set?
iii) Write the Euclidean metric on R^{n}.
iv) Define open set in a metric space (X, d).
v) Is the empty set ϕ in a metric space (X, d), closed ?
vi) On the real line (R, d), find whether or not the subset $] 0,4[$ of R is a neighbourhood of 3 ?.
2. Answer the following
$2 \times 3=6$
i) On the real line (R, d), show that a singleton set is not open.
ii) In the usual metric space (R, d), show that every open interval is an open set.
iii) In a discrete metric space (X, d), show that every subset is open.
3. Prove that the set R^{n} of all ordered n-tuples with the function d defined by

$$
d(x, y)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}, \text { for all } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{n}
$$

is a metric space.
4. In a metric space (X, d), prove that the intersection of a finite number of open sets is open.
5. In a metric space (X, d), show that a subset F of X is closed if and only if its complement is open.

