RANGIA COLLEGE DEPARTMENT OF MATHEMATICS

HOME ASSIGNMENT

6th Semester (General), 2020 Paper : 6.2 (Advanced Calculus)

(This Home assignment will be assessed as an Internal Examination (Sessional examination))

The figures in the margin indicate full marks for the questions

- 1. Answer the following.
 - i) Define usual metric on R^2 ($R^2 = R \ge R$ is Complex plane).
 - ii) Is it true that different metric can be defined on the single non-empty set ?
 - iii) Write the Euclidean metric on R^n .
 - iv) Define open set in a metric space (X, d).
 - v) Is the empty set ϕ in a metric space (*X*, *d*), closed ?
 - vi) On the real line (*R*, *d*), find whether or not the subset]0, 4[of *R* is a neighbourhood of 3 ?.

2. Answer the following

- i) On the real line (R, d), show that a singleton set is not open.
- ii) In the usual metric space (R, d), show that every open interval is an open set.
- iii) In a discrete metric space (X, d), show that every subset is open.
- 3. Prove that the set R^n of all ordered *n*-tuples with the function *d* defined by

$$d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}, \text{ for all } x = (x_1, x_2, \dots, x_n) \text{ and } y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$

is a metric space.

- 4. In a metric space (*X*, *d*), prove that the intersection of a finite number of open sets is open.
- 5. In a metric space (X, d), show that a subset F of X is closed if and only if its complement is open.

 $2 \ge 3 = 6$

4

4

 $1 \ge 6 = 6$